top of page

Probing the mineralized tissue-adhesive interface for tensile nature and bond strength

The mechanical performance of the dentin-adhesive interface contributes significantly to the failure of dental composite restorations. Rational material design can lead to enhanced mechanical performance, but this requires accurate characterization of the mechanical behavior at the dentin-adhesive interface. The mechanical performance of the interface is typically characterized using bond strength tests, such as the micro-tensile test. These tests are plagued by multiple limitations including large variations in the test results. The challenges associated with conventional tensile tests limit our ability to unravel the complex relationships that affect mechanical behavior at the dentin-adhesive interface. This study used the diametral compression test to overcome the challenges inherent in conventional bond strength tests. The bovine femur cortical bone tissue was considered as a surrogate material (the mineralized tissue) for human dentin. Two different adhesive formulations, which differed by means of their self-strengthening properties, were studied. The tensile behavior of the mineralized tissue, the adhesive polymer, and the bond strength of the mineralized tissue - adhesive interface was determined using the diametral compression test. The diametral compression test improved the repeatability for both the tensile and bond strength tests. The rate dependent mechanical behavior was observed for both single material and interfacial material systems. The tensile strength and bond strength of the mineralized tissue-adhesive interface was greater for the self-strengthening formulation as compared to the control.

Tamerler LAB, University of Kansas

bottom of page