top of page

Purification and characterization of a manganese peroxidases from wood-degrading fungus Trichophyton rubrum LSK-27. Enzyme and Microbial Technology

A manganese peroxidase (MnP) from a wood-degrading fungus Trichophyton rubrum LSK-27 was purified to homogeneity by anion-exchange chromatography followed by gel filtration. Molecular mass of the purified enzyme was determined to be about 42 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE). Spectrophotometric analysis of the enzyme revealed one Soret maximum at 407 nm, and two visible peaks at 502 and 644 nm, which are consistent with photometric spectra of other MnPs. Mass spectrometric analysis of the digested protein revealed that it had a very high homology to a unique peroxidase (a hybrid of MnP and lignin peroxidase) from Bjerkandera sp. B33/3. Bjerkandera MnP was able to oxidize veratryl alcohol, whereas T. rubrum LSK-27 MnP could not. T. rubrum LSK-27 MnP had the highest pI of 8.2 among MnPs reported so far. The enzyme was stable at rather high temperatures, and when compared with other MnPs, this MnP was more stable in the presence of high concentrations of H2O2.

Tamerler LAB, University of Kansas

bottom of page